self_writing <-na.omit(analysis_data$Self.report_1)self_reading <-na.omit(analysis_data$Self.report_2)self_candidate <-na.omit(analysis_data$Self.report_3)### Bias endorsementstudy2_results[["self_writing_endorsement"]] <-sum(self_writing >=4)/length(self_writing)study2_results[["self_reading_endorsement"]] <-sum(self_reading >=4)/length(self_reading)study2_results[["self_candidate_endorsement"]] <-sum(self_candidate >=4)/length(self_candidate)## T.tests against maximum "pure" value"t.test(self_writing, mu =1)
One Sample t-test
data: self_writing
t = 16.745, df = 87, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 1
95 percent confidence interval:
4.034475 4.851889
sample estimates:
mean of x
4.443182
t.test(self_reading, mu =1)
One Sample t-test
data: self_reading
t = 12.545, df = 87, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 1
95 percent confidence interval:
2.931774 3.659135
sample estimates:
mean of x
3.295455
t.test(self_candidate, mu =1)
One Sample t-test
data: self_candidate
t = 13.246, df = 84, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 1
95 percent confidence interval:
3.039688 3.760312
sample estimates:
mean of x
3.4
## T.tests against midpointself_writing_ttest <-t.test(self_writing, mu =4)study2_results[["self_writing_ttest"]] <- self_writing_ttestself_reading_ttest <-t.test(self_reading, mu =4)study2_results[["self_reading_ttest"]] <- self_reading_ttestself_candidate_ttest <-t.test(self_candidate, mu =4)study2_results[["self_candidate_ttest"]] <- self_candidate_ttest
Peer report
peer_writing <-na.omit(analysis_data$Peer.report_1)peer_reading <-na.omit(analysis_data$Peer.report_2)peer_candidate <-na.omit(analysis_data$Peer.report_3)### Bias endorsementstudy2_results[["peer_writing_endorsement"]] <-sum(peer_writing >=4)/length(peer_writing)study2_results[["peer_reading_endorsement"]] <-sum(peer_reading >=4)/length(peer_reading)study2_results[["peer_candidate_endorsement"]] <-sum(peer_candidate >=4)/length(peer_candidate)## T.tests against minimum valuet.test(peer_writing, mu =1)
One Sample t-test
data: peer_writing
t = 21.128, df = 88, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 1
95 percent confidence interval:
4.165695 4.823069
sample estimates:
mean of x
4.494382
t.test(peer_reading, mu =1)
One Sample t-test
data: peer_reading
t = 21.629, df = 88, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 1
95 percent confidence interval:
4.122296 4.754109
sample estimates:
mean of x
4.438202
t.test(peer_candidate, mu =1)
One Sample t-test
data: peer_candidate
t = 21.646, df = 87, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 1
95 percent confidence interval:
4.127018 4.759346
sample estimates:
mean of x
4.443182
## T.tests against midpointpeer_writing_ttest <-t.test(peer_writing, mu =4)study2_results[["peer_writing_ttest"]] <- peer_writing_ttestpeer_reading_ttest <-t.test(peer_reading, mu =4)study2_results[["peer_reading_ttest"]] <- peer_reading_ttestpeer_candidate_ttest <-t.test(peer_candidate, mu =4)study2_results[["peer_candidate_ttest"]] <- peer_candidate_ttest